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SUMMARY

Animal behavior often forms sequences, built from
simple stereotyped actions and shaped by environ-
mental cues. A comprehensive characterization of
the interplay between an animal’s movements and
its environment is necessary to understand the
sensorimotor transformations performed by the
brain. Here, we use unsupervised methods to study
behavioral sequences in zebrafish larvae. We
generate a map of swim bouts, revealing that fish
modulate their tail movements along a continuum.
During prey capture, larvae produce stereotyped se-
quences using a subset of bouts from a broader
behavioral repertoire. These sequences exhibit low-
order transition dynamics and immediately respond
to changes in visual cues. Chaining of prey capture
bouts is disrupted in visually impaired (lakritz and
blumenkohl) mutants, and removing the prey stim-
ulus during ongoing behavior in closed-loop virtual
reality causes larvae to immediately abort the hunt-
ing sequence. These results suggest that the contin-
uous integration of sensory information is necessary
to structure the behavior. This stimulus-response
loop serves to bring prey into the anterior dorsal vi-
sual field of the larvae. Fish then release a capture
strikemaneuver comprising a stereotyped jawmove-
ment and tail movements fine-tuned to the distance
of the prey. Fish with only one intact eye fail to
correctly position the prey in the strike zone, but
are able to produce the strike itself. Our analysis
shows that short-term integration of binocular visual
cues shapes the behavioral dynamics of hunting,
thus uncovering the temporal organization of a
goal-directed behavior in a vertebrate.

INTRODUCTION

Quantitative descriptions of behavior are essential if we are to

fully understand the brain [1]. Such descriptions have provided

a framework for interrogating the genetic and neural basis of

behavior in worms, flies, and mice [2–5]. It is believed that
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complex, flexible behavior arises as a result of animals chaining

together simpler, more stereotyped movements [6–8]. These

movements have been termed motor primitives [9], synergies

[10], movemes [11], or behavioral modules [5, 7, 12–14]. How-

ever, whether such modules truly constitute stereotyped,

invariant movements or whether they merely reflect extremes

in a behavioral continuum remains unclear [12, 14–17].

Animals chain their movements into sequences to achieve

their desired goal. Such sequences may be stereotyped, with

the behaviors chaining together in a similar way with each occur-

rence [18]. Alternatively, sequences may be flexible, with the

ordering of modules different each time they appear. In such

cases, sequences may be hierarchically organized, whereby

switching between modules is stochastic but influenced by

longer-term behavioral states or sensory stimuli [5, 19–21]. Clas-

sically, fixed-action patterns have described behaviors in which

a single ‘‘releasing’’ stimulus is sufficient to drive an entire

sequence of movements [8]. Alternatively, in a stimulus-

response loop each movement generates a new sensory stim-

ulus for the animal that, itself, serves as a trigger for the next

movement in the chain [22].

Capturing prey is an innate and essential behavior for the sur-

vival of many animals. Zebrafish larvae hunt protists that float in

the water column [23–25]. Both real and virtual prey presented to

restrained animals can produce isolated orienting swim bouts

and eye convergence, hallmarks of prey capture in zebrafish

larvae [26–28]. Such movements could form a stimulus-

response loop, whereby movements of the tail and eyes bring

prey to the near-anterior visual field of the animals [16, 29]. How-

ever, it is not clear whether this would be implemented by

gradual changes in the kinematics of bouts over the course of

a hunting sequence [16,23], or as a result of discrete switches

between more stereotyped motor patterns [14]. One possibility

is that different stages of the behavior have a different organiza-

tion. For example, animals might dynamically modulate their

movements to adjust to the position of the prey during pursuit,

but resort to more stereotyped motor patterns when consuming

prey [22]. Studies of prey capture have predominantly focused

only on tail, jaw, or fin movements, and it is not known how these

movements are coordinated over the behavioral sequence

[16, 23, 30, 31]. Moreover, it has been speculated that binocular

overlap in the visual field produced during eye convergence is

necessary to bring prey into a ‘‘strike zone’’ that triggers the final

capture bout [16, 26, 32]. The necessity of binocular vision for

hunting, however, has not been tested.
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Figure 1. Zebrafish Larva Bouts Lie on a Behavioral Continuum

(A) Schematic of the setup used to record behavioral data.

(B) Example high-speed video frame. Inset overlaid with tail and eye tracking.

(C) Eye and tail kinematics extracted from 6 s of recording. Ro, rostral; Ca, caudal.

(D) Principal component analysis (PCA) of tail shapes. Explained variance (bars) and cumulative explained variance (points) of the first eight components. We

retained three components (dotted line).

(E) ‘‘Eigenfish’’ of the first three PCs.

(legend continued on next page)
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Here, we present a new computational framework for decom-

posing an animal’s movements into kinematic and transition

components. We apply our pipeline to the bouts of zebrafish

larvae and find a continuum of behaviors. We use unsupervised

analysis of behavioral transitions to reveal stereotyped chaining

during prey capture through a subset of these bouts. These se-

quences emerge from a stimulus-response loop in which the

fish’s movements generate new stimuli that trigger subsequent

bouts in the chain. Prey capture sequences are disrupted

when we interfere with visual processing using genetic mutants

or remove visual cues after the behavior is initiated. Further

investigating the capture strike, we show discreteness in tail

and jaw movements during this behavior. In addition, our

approach reveals changes in the prey capture dynamics of

monocularly blinded fish, impeding their ability to bring prey

into the final ‘‘strike zone.’’

RESULTS

Zebrafish Swim Bouts Lie on a Low-Dimensional
Behavioral Continuum
We sought a representation of zebrafish behavior that would

reveal whether different bout types are truly stereotyped and

discrete, or whether the kinematics are more graded. We re-

corded and tracked individual zebrafish larvae (7–8 days post-

fertilization [dpf]; n = 45) hunting live prey (paramecia) in a

custom-built behavioral arena (Figures 1A–1C; Video S1; STAR

Methods). We analyzed 57,644 individual swim bouts with a

pipeline involving four main steps. First, we reduced the dimen-

sionality of our tracked data (Figures 1D–1F). Second, we

computed the distance between each pair of bouts (Figure 1G).

Third, we combined similar bouts into exemplars by micro-clus-

tering (Figure 1H). Lastly, we performed non-linear embedding

using the distances between these exemplars to generate the

final behavioral space (Figures 1I–1K and S1).

Mechanical and neural constraints impose limits on the

possible posture configurations for an animal; thus, movements

are generally believed to lie on relatively low-dimensional mani-

folds [7, 12, 17, 33, 34]. As our tracking provides overly redun-

dant measurements along the tail, we performed principal

component analysis (PCA) on the sequence of all tail postures.

Three PCs explained 85% of the variance in tail shape (Fig-

ure 1D). These PCs define postural modes and can be repre-

sented by a set of tail shapes known as ‘‘eigenfish’’ [17, 34, 35]

(Figure 1E). As posture is dynamic over time, these shapes trace

a trajectory in three-dimensional coordinate space (Figure 1F;

Video S2). Retaining more than three postural modes did not
(F) Three example bouts, labeled a–c in (C). For each bout, we show curvature alon

and sequence of tail shapes reconstructed from PCs.

(G) Bout pairs aligned using dynamic time warping (DTW). High similarity, smal

stretched between trajectories. Low similarity, large sum of distances.

(H) Bout micro-clusters identified with affinity propagation (thin lines). Thick line,

(I) Isomap embedding of DTW distances between exemplars. Left: projection ont

colored according to position within a hue-lightness cylinder centered on origin.

(J) Eigenvalues (top) and reconstruction errors (bottom) of the isomap embeddin

(K) Kernel density estimation of bout density over first two isomap dimensions. R

rowheads: local densities.

See also Figure S1 and Videos S1 and S2.
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alter the final structure of the behavioral space (Figure S1A).

Thus, the tail kinematics of zebrafish larva bouts can be accu-

rately represented in this lower-dimensional space.

To measure the distance between different bouts of tempo-

rally varying postures, we used dynamic time warping (DTW),

which handles temporal offsets and small variations better

than Euclidean distance [36, 37] (Figure 1G). From these dis-

tances, we generatedmicro-clusters (each represented by a sin-

gle exemplar) using affinity propagation [38] (Figure 1H). Micro-

clustering serves numerous functions that aid with embedding

and subsequent analysis. It robustly handles the non-metric dis-

tances obtained from DTW [38], removes rare or spurious

events, and prevents common trajectories from dominating the

embedding. Furthermore, we can conveniently embed data

collected in different experiments by aligning to exemplars.

Altering the number of exemplars did not strongly influence the

structure of the final behavioral space (Figure S1B).

Next, we performed isomap embedding [39] using the DTW

distances between exemplars (Figure 1I), which preserves

global behavior structure preferentially to local structure. We

could not discern any additional structure if we embedded all

bouts, suggesting that we were not losing information about

the structure of behavior by only embedding exemplars (Fig-

ure S1E). We found that three dimensions were sufficient to

capture most of the variation in bout kinematics, as indicated

by an elbow in both the eigenvalues and reconstruction error

of the embedding (Figure 1J). Inspecting bouts that are repre-

sented in different regions of the behavioral space (Figure 1I),

we found capture strikes (far left) [14, 40], forward scoots (lower

left) [24, 41], routine turns (right) [24, 41], and J-turns character-

istic of prey capture behavior (top) [25]. Our results suggest that

turn angle, swimming speed, and tail laterality are the dominant

kinematic features that define global bout structure (FigureS1F).

Overall, we observed a high degree of continuity across

bouts, consistent with earlier descriptions of zebrafish behavior

[16, 23, 36].

To confirm that the apparent continuity in the behavior was not

an artifact of the isomap embedding, we also performed t-SNE

(Figure S1C) and UMAP (Figure S1D). While UMAP also revealed

a more continuous behavioral space, t-SNE suggested a small

degree of local clustering may be lost in our approach, mostly

within the forward scoots (Figure S1C). Closer inspection of

our isomap space, accounting for local structure preserved in

the micro-clusters, recapitulated these local densities (Fig-

ure 1K). Thus, our results suggest a structure to zebrafish

behavior that is largely continuous, with some local densities

representing more stereotyped types of forward swim.
g rostral-caudal axis of the tail over time, trajectory through the first three PCs,

l sum of Euclidean distances between aligned points, represented by ribbon

exemplar. Left subpanels: tail movement represented by the exemplar.

o the first two dimensions. Right: projection onto first three dimensions. Points

g. We retained three components (dotted line).

ight: forward scoot region of the behavioral space (white dotted outline). Ar-



Behavioral Sequences Are Built from a Small Number
of Simple Chaining Rules
Next, we investigated the temporal organization of bout se-

quences for structure and stereotypy (Figure 2A). To this end,

we decomposed the one-step transition frequency matrix be-

tween micro-clusters into a set of ‘‘transition modes,’’ each of

which captures some feature of temporal behavioral dynamics

(Figures 2B and S2B). Since the matrix is sparse, we first

smoothed transitions using bout distances in behavioral space,

as bouts with very similar kinematics likely share similar transi-

tions (Figure S2A). We were particularly interested in three types

of transitionmode that can be obtained from this decomposition:

the ‘‘common’’ mode, symmetric modes (S-modes), and anti-

symmetric modes (A-modes). The common mode reflects the

most commonly visited micro-clusters across all transitions.

S-modes recover groups of bouts that contribute to a ‘‘sticky’’

behavioral state [42]. A-modes highlight dynamic transitions be-

tween groups of bouts. Each transitionmode is associatedwith a

singular value, which describes how much that mode contrib-

utes toward the overall transition structure.

The majority of transitions in our data were explained by a

combination of the common mode, one S-mode, and one

A-mode (Figure 2C, elbow in the singular values). To test whether

the dynamics captured by these modes were consistent across

animals, we tested our ability to predict the transitions performed

by half of the animals using transition modes obtained from the

other half (Figure 2D; STAR Methods). We found that the first

S-mode (S1) improved our behavior prediction by 31% over a

null model consisting only of the common mode (31.4 ± 4.5,

mean ± SD), and the first A-mode (A1) improved our behavior

prediction by 2% (2.0 ± 0.54, mean ± SD).

Next, we investigated which transitions were represented by

each significant transition mode (Figures 2E–2G). We found

that S1 separated approach swims from larger spontaneous

swims and turns (Figure 2F). A1 appeared to represent transi-

tions through J-turns, approach swims, and capture strikes,

bouts classically associated with prey capture (Figure 2G). To

confirm this, we used eye convergence as an independent mea-

sure of hunting behavior (Figure 2H) [26]. We identified bouts that

occurred when the eyes were and were not converged (‘‘prey

capture’’ and ‘‘spontaneous,’’ respectively) and found that these

correlated with S1 (Spearman’s r = 0.71) (Figures 2F and 2I).

Furthermore, by studying changes in eye convergence, we could

identify bouts that occurred at the beginning, middle, and end of

a hunting sequence. This demonstrated that A1 accurately

recovered behavioral sequences during prey capture (r = 0.45,

0.41, 0.41; A1 with early, mid, late prey capture) (Figures 2G

and 2J). We then recorded fish swimming in the absence of

prey and mapped their bouts into our behavioral space by align-

ment to the exemplars. Performing SVD of this spontaneous

behavior revealed a dominant common mode and no significant

A-modes (Figure S3). Thus, zebrafish larvae have a unique reper-

toire of bouts reserved for hunting and produce stereotyped and

dynamic sequences using these bouts.

Seven Clusters in the Behavioral Space Correspond to
Broad Bout Types
We next assigned labels to different parts of the behavioral

space. This approach has three benefits. First, it allows us to
relate different regions of our space to bout types identified

through other expert- and machine-annotated descriptions of

behavior [14, 41] (Figures 3B and 3C). Second, larger clusters

provide more robust states for Markov chain analysis than mi-

cro-clusters (Figures 3D–3G). Third, by integrating over many

bouts, we can generate maps of stimuli that are associated

with different regions of the behavioral space (Figure 3H).

To generate such labels, we generated a new behavioral

space, accounting for both kinematic similarity and similarity in

chaining structure (Figure 3A; STAR Methods). Kinematic simi-

larity between exemplars was determined using DTW distances

(Figure 1G). Chaining similarity was determined by finding exem-

plars that contributed similar weights to the transition modes

(Figures 2F and 2G). We multiplied these numbers and pro-

ceeded with isomap embedding to generate the new space. Hi-

erarchical clustering separated bouts into seven types (Fig-

ure S4A), corresponding to J-turns, approach swims, ‘‘slow 1’’

swims, capture strikes, ‘‘slow 2’’ swims, high-angle turns

(HATs), and routine turns described in previous studies [14, 25,

41] (Figure 3B; Video S3). J-turns, approach swims, and capture

strikes occupy the prey capture region of the behavioral space

and predominantly occurred when the eyes were converged

(Figures 3C and S4B). ‘‘Slow 2’’ swims, HATs, and routine turns

were performed by fish during spontaneous swimming. ‘‘Slow 1’’

swims contributed to both prey capture and spontaneous

behavior. Thus, taking transition dynamics into account, we

could relate regions of our behavioral space to known bout types

of zebrafish larvae and demonstrate the differential contributions

of these swims to spontaneous and prey capture behavior.

Prey Capture Sequences Are Maintained through Tight
Stimulus-Response Loops
Next, we wanted to test whether transition dynamics were

shaped by short- or longer-term memory processes. We con-

structed a family of models using our behavioral clusters as

states in a Markov chain and quantified how longer memories

affected prediction of the next bout in a sequence (Figures 3D

and 3E; STAR Methods). The default model contained no mem-

ory, and for all bout clusters (excluding capture strikes) predic-

tion of the following bout could be improved by including knowl-

edge of the previous bout label (J-turn, 43%; approach, 47%;

slow 1, 8%; slow 2, 71%; HAT, 13%; routine turn, 118%). Our

prediction of bouts following capture strikes was generally

poor, possibly due to more variability within this cluster (Fig-

ure 3B). Further increasing the memory of previous bouts in a

sequence did not improve prediction for bouts following J-turns,

approach swims, or ‘‘slow 2’’ swims, though it did slightly

improve performance for ‘‘slow 1’’ swims, HATs, and routine

turns (7%, 5%, and 26%, respectively) (Figures 1E and S4C).

This indicates that the preceding bout is a strong predictor of

transition dynamics, which is compatible with ‘‘memoryless’’

behavior driven by a stimulus-response loop.

To investigate the most common transitions underlying pre-

dictable behavioral sequences, we visualized transitions as an

ethogram (Figure 3F). The most likely transitions were from

J-turns and approaches to another approach (>40%). Moreover,

we found elevated transition probabilities between ‘‘slow 2’’

swims, HATs, and routine turns (11%–42%), and high probabil-

ities of transitioning to ‘‘slow 1’’ swims frommost other behaviors
Current Biology 30, 54–69, January 6, 2020 57



Figure 2. Singular-Value Decomposition Reveals Behavioral Dynamics

(A) Top: tail tip angle trace from Figure 1C. Bouts color-coded according to position in the behavioral space (bottom).

(B) Decomposition of the transition frequency matrix (smoothed, obtained from all bouts) into transition modes by singular-value decomposition (SVD).

(C) Singular values of the symmetric (left) and antisymmetric (right) components of the transition frequency matrix. Mean ± SD over 10,000 partitions of the data

(shaded area). Observed transitions (red), shuffled transitions (gray).

(D) Improvement of behavioral prediction each transitionmode offers over commonmode.Mean ± SDover 10,000 partitions. Left: S-modes. Right: A-modes. *p <

0.001, permutation test.

(E–G) Contribution of each micro-cluster to selected transition modes.

(E) Common mode. Color intensity reflects how often each position in space was visited.

(F) S1, represented by a single vector. Transitions occur between bouts with the same sign (color).

(G) A1, represented by a pair of vectors. Bouts with a given sign on the left transition to bouts with the same sign on the right. Bouts with a given sign on the right

transition to bouts with the opposing sign on the left.

(H) Top: 2D histogram of eye angles across all frames. Bottom: bimodal distribution of eye convergence angles across all frames. Local minimum in the eye

convergence distribution provides a threshold for defining prey capture behavior.

(I) Prey capture index of each micro-cluster. Index defined as (# prey capture bouts � # spontaneous bouts)/(# total bouts).

(J) Proportion of bouts in each micro-cluster that occur during early (eyes converge during bout), middle (eyes are converged), or late (eyes de-converge during

bout) prey capture.

See also Figures S2 and S3.
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(15%–39%). To investigate which of these transitions were sig-

nificant, we compared the observed probabilities to randomly

shuffled bout sequences (Figure 3G). This corroborated the re-

sults of our SVD analysis, revealing unidirectional chaining

through J-turns, approaches, and capture strikes that were

>50% more likely than chance, as well as enriched transitions

between spontaneous clusters (17%–127% increase).

We next calculated the probability density of a paramecium

being within a certain area of the visual field before and after

each type of bout (Figures 3H and S4D; STAR Methods). We

found that J-turns were initiated when prey lie in the lateral visual

field (~45� from midline) and served to center prey in the anterior

visual field (~1� from midline) (Figure 3H, top). This new stimulus

correlated with the onset of approach swims, which moved prey

toward a stereotyped position in the near-anterior visual field

(Figure 3H,middle). ‘‘Slow 1’’ swims occurred if prey were further

away (Figure S4D). Prey in the near-anterior visual field (~0.4 mm

from the fish) were associated with capture strikes (Figure 3H,

bottom). Thus, the successive transformation of the visual scene

as a result of the fish’s own motion could account for the stereo-

typed sequence through bouts we observed during prey cap-

ture. We do not find such stereotyped stimuli associated with

spontaneous swims (Figure S4D), so bidirectional transitions be-

tween different types of forward swim and turn during this

behavior are likely mediated by internal rather than external fac-

tors [43, 44].

Genetic Disruptions of Vision Do Not Change Bout
Kinematics, but Alter Behavioral Dynamics
To explore how sensory cues orchestrate prey capture se-

quences, we tested fish larvae with perturbations of their visual

system. Lakritz mutants (lakth241) [45, 46] are blind due to a null

mutation in atonal homolog 7 (atoh7), a transcription factor

necessary for RGC development (Figure 4A, middle). SVD re-

vealed that key transition modes associated with prey capture

were absent in lak mutants (absolute cosine similarity: 0.59,

common; 0.13, S1; 0.06, A1) compared to wild-type sibling con-

trols (similarity: 0.96, common; 0.88, S1; 0.72, A1) (Figures 4B

and 4C, middle). We also performed pharmacogenetic ablation

of RGCs after fish had already had prey capture experience

[47] (Figure S5A). Ablated fish lacked normal prey capture
Figure 3. Prey Capture Dynamics Arise through a Stimulus-Response

(A–C) Clustering bouts.

(A) Generating a combined kinematic-transition space. Seven behavioral clusters a

shown).

(B) Example bouts from seven behavioral clusters. Subpanels: individual tail a

representative bout (bottom); tail reconstruction of the representative bout (right

(C) Isomap from Figure 1I showing location of behavioral clusters.

(D and E) Predicting the next bout in a behavioral sequence.

(D) Top: bout sequence from Figure 1C color-coded according to cluster. Bottom:

the above bout sequence.

(E) Incremental improvement over previousmodel prediction when successively ad

0.01, Student’s t test, Bonferroni correction).

(F) Quantitative ethogram of zebrafish swimming behavior during prey capture. C

transitioning between clusters.

(G) Transition probabilities between clusters significantly higher than chance (*p <

in probability compared to shuffled data.

(H) Transformation of prey probability density in the visual scene during J-turn

thresholded using the 85th percentile. Average fish outline in white (left, center) o

See also Figure S4 and Video S3.

60 Current Biology 30, 54–69, January 6, 2020
dynamics, which were present in sibling controls (similarity:

0.58, common; 0.13, S1; 0.12, A1) (Figures S5B–S5D). These re-

sults demonstrate that the stereotyped behavioral sequences

that occur during prey capture are innate and, under normal light

conditions, depend on vision.

We next investigated the effect of a more subtle mutant pheno-

type on the structure of prey capture behavior. Blumenkohl mu-

tants (blutc257) [46] carry a mutation in vglut2a, a gene encoding

one of the vesicular glutamate transporters expressed by

RGCs. These mutants grow larger RGC axonal arbors in the

tectum and show decreased visual acuity (Figure 4A, bottom)

[48]. Mutants performed more spontaneous bouts than heterozy-

gous sibling controls (similarity between common modes: 0.64)

(Figure 4B, bottom). Controls exhibited normal prey capture dy-

namics (similarity compared to wild-types: 0.95, common; 0.93,

S1; 0.87, A1), while mutants lacked the prey capture-associated

transition modes (similarity compared to control: 0.64, common;

0.08, S1; 0.10, A1) (Figures 4C and S6A–S6C). Studying stimuli

associated with different bout types in these animals revealed

that mutants performed J-turns when prey were closer, consis-

tent with reduced visual acuity and accounting for the observed

reduction in their hunting activity (Figures 4D, S6D, and S6E).

Virtual Reality Experiment Reveals that Hunting
Requires a Sustained Prey Stimulus
Fish larvae may make moment-to-moment decisions during

hunting. Alternatively, a single releasing stimulus may be suffi-

cient to drive the behavior to completion. We developed a

free-swimming virtual prey capture assay that allowed us to con-

trol the visual cues presented to an animal (Figure 4E; STAR

Methods). Projecting small white dots moving with parame-

cium-like kinetics on the surface of the water reliably triggered

prey capture in 40% of animals tested (17/41, >5% time spent

with eyes converged when stimulus present). We presented an-

imals with ‘‘persisting’’ trials during which larvae were allowed to

hunt virtual prey objects ad libitum, and ‘‘vanishing’’ trials during

which prey disappeared as soon as eye convergence was de-

tected online (Figure 4F). Hunting sequences were significantly

shorter during vanishing trials, and this was significant across

all responsive fish (mean 1.38 versus 0.82 s) (Figure 4G). Hunting

sequences also consisted of fewer bouts during vanishing trials,
Loop

re defined using hierarchical clustering in 20 dimensions of this space (first two

ngle traces in color with the average in black (top left); tail kinematics of a

). HAT, high-angle turn.

schematic partitioning of the behavioral space into bout types, showing part of

dingmemory of previous bouts in a sequence.Mean improvement ± SEM (*p <

olored circles represent behavioral clusters; gray arrows indicate probability of

0.05, permutation test, Holm-Bonferroni correction). Arrows show fold change

s, approaches, and capture strikes in fish-centered coordinates. Images are

r black (right). Scale bar, 1 mm.



Figure 4. Chronic and Acute Disruption in Virtual Reality of Visual Cues Impairs Prey Capture

(A–D) Behavioral dynamics in mutants.

(A) Schematic anatomical phenotype of lakritz (lak) and blumenkohl (blu) mutants.

(B) Common mode obtained from the SVD of transition matrices after mapping bouts from wild-type sibling control (top), lak (middle), and blu (bottom) animals

into the behavioral space from Figure 1.

(C) Singular values associated with S- and A-modes. Black arrowheads: prey capture-associated modes present in controls but absent or disrupted in mutants.

(D) Stimulus maps associated with J-turns.

(E–H) Acute disruption of visual cues during prey capture.

(E) Setup and experimental design for a virtual prey capture assay. Animals are presented with six 40 s stimulus trials, interspersed with intervals with no stimuli.

Persisting trials: virtual prey are always present. Vanishing trials: virtual prey disappear as soon as eye convergence is detected.

(F) Example period from persisting (top) and vanishing (bottom) trials. Horizontal bars show when stimulus was present. Arrowheads indicate when eye

convergence was detected online and the stimulus removed. Diamonds: automatic bout detection. Shaded regions: post hoc determination of eye convergence.

(G) Left: cumulative distribution of hunt durations (***p < 0.001, Kolmogorov-Smirnov test). Right: average prey capture sequence duration during persisting and

vanishing trials (***p < 0.001, Wilcoxon signed-rank test).

(H) Left: cumulative distribution of bout chain lengths (*p < 0.05, Kolmogorov-Smirnov test). Right: average number of bouts per hunting sequence (***p < 0.001,

Wilcoxon signed-rank test).

See also Figures S5 and S6.

Current Biology 30, 54–69, January 6, 2020 61



consistent across animals (median 1.7 versus 1.0 bouts per

sequence) (Figure 4H).

Together, these results demonstrate that animals decide on

the next bout in a sequence based on the available visual cues

at a givenmoment. We conclude that prey capture is an example

of a stimulus-response loop that serves to bring the prey to the

near-anterior visual field of zebrafish, terminating with a capture

strike.

Distance to the Prey Determines the Choice of
Strike Type
We next analyzed the maneuvers that precede the capture of

prey. Previously, strikes have been classified as ram or suction

[16, 23], low or high velocity [40], and long or short duration

[14]. We similarly found a bimodal distribution in capture strike

duration, with one peak around 100 ms and a second peak

around 200 ms (Figure 5A). Across all strike durations, however,

we noticed that fish consumed prey after a stereotyped time

(~50 ms), and that long-duration strikes resulted from a second,

variable bout occurring immediately after the capture event. Re-

embedding the first 50ms of capture strike dynamics to produce

a behavioral sub-space using our PCA-DTW-isomap pipeline re-

vealed two clusters in the capture strike sub-space displaying

markedly different postural dynamics (Figures 5B–5D; STAR

Methods). We termed these maneuvers the attack swim and

the S-strike (Figure 5E; Video S4). Almost all S-strikes were fol-

lowed by a post-capture bout (‘‘long duration’’) whereas attack

swims contributed to both long- and short-duration strikes (Fig-

ure 5A). This variation in strike dynamics suggests that the

behavior does not represent a single stereotyped movement,

but rather two possible capture strategies employed in different

contexts.

To test whether different strikes might be selected in response

to different stimuli, we investigated the prey probability density

distribution in the visual field of animals prior to the two bout

types. Both were triggered when prey was in the near-anterior vi-

sual field (Figure 5F); however, we noticed strong and character-

istic fin abduction that only occurred prior to the onset of

S-strikes [31]. This suggested that the animals were making pre-

paratory movements before S-strikes, so we studied the evolu-

tion of the prey stimulus over time for hunting sequences ending

in the two strike types (Video S5). We found prey position in the

anterior visual field started to diverge approximately 250ms prior

to swim onset (Figures 5G and 5H). S-strikes occurred with a

higher probability when prey was centered in the visual field

0.6 mm away. For attack swims, prey were less likely to be

centered, and the behavior typically occurred once the prey

was within 0.4 mm of the fish. These results indicate that larvae

are sensitive to the distance of a prey item in the center of their

visual field. Most commonly, larvae will perform an attack swim

once prey reach a ‘‘strike zone.’’ If, however, the prey becomes

centered in the visual field at a greater distance, larvae may

resort to using their fins to keep the prey centered until it reaches

the strike zone and then release an S-strike.

LarvaePerformStereotyped JawMovements toCapture
Prey in the Dorsal Visual Field
Animals exploit the three-dimensional water column during

naturalistic behavior [49], and we wondered whether this was
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also true during prey capture. Recording hunting behavior

from the side revealed that larvae made full use of the vertical

dimension and performed prominent cranial and jaw move-

ments during this behavior (Video S6). To better quantify these

movements, we modified our recording setup so that we could

simultaneously track tail, jaw, and cranial movements with two

views in a single camera (Figures 6A–6C; Video S7; STAR

Methods). We found that the majority of jaw movements per-

formed by larvae were initiated immediately after a swim bout

(Figure 6D). We then applied our PCA-DTW-isomap pipeline

to embed jaw movements in a new behavioral space, which re-

vealed two distinct clusters (Figures 6E and 6F). The larger clus-

ter corresponds to a relatively slow, low-amplitude depression

of the jaw with little or no movement of the cranium and could

relate to early buccal pumping in the larva or chemosensation

(Figure 6G, left). The rarer jaw movement was highly stereo-

typed, comprising a rapid, large-amplitude depression of the

jaw concurrent with cranial elevation (Figure 6G, right; Video

S6). This movement was exclusively associated with capture

events and was preceded by an attack swim or S-strike, or

occurred in isolation as a ‘‘suction’’ capture [16, 30] (Figure 6H).

Thus, different capture strategies in zebrafish larvae emerge by

combining different stereotyped tail kinematics with stereo-

typed jaw kinematics.

Hunting episodes were associated with both changes in

pitch and moving up and down in the water column (Figure 6C).

Larvae had a mean preferred orientation of ~7� and rotated

to ~12� prior to the onset of a capture (Figure 6I). Capture

events occurred when prey were in the dorsal visual field (Fig-

ure 6J), which would correspond to a ventral position on the

retina.

Larvae Use Binocular Vision to Position Prey in the
Strike Zone
It has been proposed that larvae converge their eyes during

prey capture in order to create an area of binocular overlap

[16, 26]. To test the role of binocular vision in prey capture,

we removed the lens from either one or both eyes (lensectomy

or ‘‘delensing’’) of 7-dpf larvae and tested their behavior the

following day (Figure 7A; STAR Methods; sham = 16, unilat-

eral = 18, bilateral = 16). Unilaterally delensed animals were

able to converge their eyes to the same extent as controls, indi-

cating that the procedure did not prevent eye movements;

however, bilaterally delensed animals did not perform eye

convergence, suggesting that lensectomy effectively blinded

animals to prey items (Figure 7B). Unilaterally delensed animals

spent less time engaged in prey capture than controls (median

proportion of time: 0.25, sham, versus 0.15, unilateral) (Fig-

ure 7C) and detected prey only about half as often (median

detection rate: 10 times per minute, sham, versus 6 times per

minute, unilateral) (Figure 7D). Unilaterally delensed animals

only initiated J-turns toward prey located on the same side

as their intact eye (Figure 7E). Thus, binocular vision is not

required to initiate hunting behavior.

We wanted to know how subsequent prey capture dy-

namics were affected in one-lensed animals. We used SVD

to identify transition modes in control and unilaterally delensed

groups and found a subtle but significant difference in A1 en-

coding prey capture sequence dynamics (similarity: 0.73)



Figure 5. Prey Pursuit Concludes with Either of Two Distinct Capture Maneuvers

(A) Capture strikes consist of a capture phase and a variable post-capture phase. Top: stacked KDE of capture strike durations. Attack swims (blue) and S-strikes

(orange). Middle: tail tip angle over time for capture strikes. Gray window: initial 50 ms capture phase. Bottom: KDE over jaw opening times.

(B) Pipeline for generating capture strike sub-space. Isomap embedding of DTW distances between initial capture phases of all strikes.

(C) K-means clustering (two clusters) in the capture strike sub-space. Blue, attack swims; orange, S-strikes.

(D) Trajectories through PCs for attack swims and S-strikes.

(E) Representative examples of an attack swim and an S-strike. Tail kinematics (left) and reconstructed bout (right).

(F) Prey probability density prior to attack swims (left) and S-strikes (right). White arrowheads: fin abduction.

(G) Prey probability density 250 ms prior to the onset of attack swims (left) and S-strikes (right).

Scale bar in (F) and (G), 500 mm.

(H) Prey probability density as a function of azimuthal angle at different time points in hunting sequences resulting in attack swims (blue) or S-strikes (orange) (*p <

0.05, permutation test using energy statistics to compare distributions; n.s., not significant).

See also Videos S4 and S5.
(Figure 7F). Specifically, transitions to capture strikes from

approach swims were under-represented in the unilaterally

delensed group (dotted outline). Unilaterally delensed animals
ended their hunting sequences with a capture strike only

about half as often as controls (Figure 7G). We wanted to

test whether this decrease in strike rate affected both attack
Current Biology 30, 54–69, January 6, 2020 63



Figure 6. Larvae Capture Prey from Below with Stereotyped Jaw Kinematics

(A) Schematic of the setup used to record behavior simultaneously from above and from the side.

(B) Example frame; insets are overlaid with tail and jaw tracking.

(C) Jaw and tail kinematics from 4 s of behavioral recording. Top: depression of the jaw (black) and elevation of the cranium (gray). Arrowheads: jaw movement

onsets. Spontaneousmovements (green); capture strikes (magenta). Middle: tail tracking. Bouts color-coded according to nearest exemplar in behavioral space.

Bottom: pitch of the fish.

(D) Cross-correlation between bout onsets and jaw movement onsets.

(E) Generating a jaw movement behavioral space. Jaw movements projected onto first PC followed by pairwise alignment and distance calculation with DTW.

(F) Two-dimensional isomap embedding of DTW distances between jaw movements. Clustered using HDBSCAN into spontaneous jaw movements (green),

capture jaw movements (magenta), and noise (gray).

(G) Jaw depression (top) and cranial elevation (bottom) for spontaneous (left) and capture (right) jaw movements. Colored traces: individual movements. Black

lines: average.

(H) Example tail movements (top) preceding the shown capture jaw movement (bottom).

(I) Pitch of fish prior to bouts containing spontaneous and capture jaw movements (***two-tailed p < 0.001, unpaired Student’s t test). Mean ± SEM.

(J) Prey probability density prior to bouts containing spontaneous (top) and capture (bottom) jaw movements. White: average outline of fish. Anterior is left.

See also Videos S6 and S7.
swims and S-strikes, so we again generated a capture strike

sub-space (Figure 7H; cf. Figure 5B). We found that one-

lensed animals performed only about a third as many attack

swims (median number per animal: 14, sham; 4.5, unilateral)
64 Current Biology 30, 54–69, January 6, 2020
and almost no S-strikes (median number per animal: 3.5,

sham; 0, unilateral) (Figure 7I).

The reduction in capture strikes in unilaterally blinded ani-

mals suggested that larvae may be using binocular cues to



Figure 7. Larvae Use Binocular Cues to Position Prey on the Strike Zone

(A) Lensectomy. Lens dissected from one (unilateral) or both (bilateral) eyes (red crosses). Scale bar, 500 mm.

(B) Eye convergence distributions in sham, unilaterally, and bilaterally delensed larvae. Aligned to the resting eye convergence angle (0�).
(C) Proportion of time spent engaged in prey capture (prey capture score) for each treatment group.

(D) Number of times animals converged their eyes each minute (hunt initiation rate) for each treatment group.

(E) Stimulusmaps for sham and unilaterally delensed animals during J-turns. Animals that had their right lens removed aremirrored (white cross). Scale bar, 1mm.

(F) Transition modes of sham (top) and unilaterally delensed (bottom) animals. Differences between common modes not significant (p > 0.05). Differences be-

tween S1 and A1: p < 0.05, permutation test on absolute cosine similarity. Dotted outline: approximate location of capture strikes in the space.

(G) Probability that hunting sequences terminate with a capture strike for animals in each treatment group.

(legend continued on next page)

Current Biology 30, 54–69, January 6, 2020 65



judge distance to the prey. Studying the probability distribution

in the visual field revealed that prey was less likely to fall in the

strike zone of unilaterally delensed animals (Figure 7J; Video

S8). These animals initiated attack swims when prey were

further away (0.5 mm versus 0.4 mm) and skewed ~10�–15�

in the direction of their blinded eye (Figures 7J and 7K). Thus,

it appears that larvae will typically perform the capture strike

when prey fall on the temporal-ventral retina of both eyes (Fig-

ure 7L). If a fish brings the prey into the temporal-ventral retina

of one eye, but is missing input from the other eye, it may

trigger an attack swim prematurely. Furthermore, animals

may use binocular cues to determine that prey is centered

but too far from the strike zone, triggering an S-strike

maneuver.

DISCUSSION

Our analysis reveals that zebrafish larvae capture prey through

a stimulus-response loop relying on immediate binocular cues.

We identify stereotyped bout sequences that emerge from low-

order transition rules. Chronic ‘‘blurring’’ of the visual scene in

genetic mutants impairs prey detection and removal of visual

cues after initiation of behavior causes animals to abort the

hunting sequence early. Bout sequences position the prey in

the center of the proximal dorsal visual field, triggering a cap-

ture strike. Depending on the distance to the prey, animals

will perform one of two possible strike maneuvers. Disrupting

binocular vision impedes an animal’s ability to position the

prey centrally in the visual field and causes premature release

of a capture strike.

Different embedding approaches can highlight different struc-

tural aspects when visualizing behavior in lower dimensions.

Previously, t-SNE has revealed local structure in the behavior

of flies and fish [12, 14]. We found that isomap embedding per-

formed well at separating distinct and rarer bout types such as

J-turns and capture strikes (Figures 1I and 3C), but was less

effective than t-SNE at separating different kinds of forward

scoot (Figures 1I and S1C). Some of this local structure was,

however, retained in an intermediate clustering step (Figures

1H and 1K). We also revealed distinct types of capture maneu-

vers and jaw movements using isomap embedding, and thus

this approach may be complementary to t-SNE and UMAP

when investigating the structure of behavior.

Previous studies of the temporal structure of behavior have em-

ployed Markov models [5, 19, 21]. We identified common transi-

tions shared across different regions of our behavioral space,
(H) Capture strike sub-space, generated as outlined in Figure 5B. Capture stri

S-strikes (orange).

(I) Number of strikes performed by animals split by strike type (attack swim versu

(J) Prey probability density at the onset of attack swims in sham (left) and unilateral

mirrored). Scale bar, 500 mm.

(K) Prey probability densities prior to attack swims at various distances (top) and

animals. Positive angles signify azimuthal position toward the sighted eye.

(L) Model for the binocular control of capture strikes. Far left: a paramecium fallin

outside the strike zone triggers an approach. Center right: a paramecium centere

paramecium falling outside the strike zone in a larva with its left lens removed

between current prey position (magenta) and strike zone (asterisk/green cone).

(C), (D), (G), and (I): *p < 0.05, **p < 0.01, ***p < 0.001; Mann-Whitney U test. (J) a

distances between distributions. See also Video S8.
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and this aided the delineation of cluster boundaries subsequently

used for Markov chain analysis (Figures 3A–3C). We did not find

strong evidence of higher-order dynamics in our analysis of se-

quences built from these clusters (Figures 3D and 3E), suggesting

that transition modes provide an accurate account of zebrafish

larva prey capture behavior (Figures 3F and 3G). Recent work in

this area has also found the preceding bout strongly influences

the next, although longer-term dynamics, including satiety state,

can have some subtle effects [50]. Future work may seek to

generalize the analysis of transition modes to also account for

behavioral changes over longer timescales.

We demonstrated that short-term visual cues on the order of

100s of milliseconds are necessary to maintain hunting behavior

(Figures 4E–4H). Our new closed-loop virtual reality assay ex-

tends the possibilities for studying the visual cues necessary

for the formation and maintenance of hunting behavior under

more naturalistic free-swimming conditions, as previous ana-

lyses have been restricted to embedded preparations [26, 28,

29]. Short integration windows for deciding the next behavior

have been observed in thermal navigation of larvae [51] and so-

cial affiliation of juvenile zebrafish [52]. Thus, stimulus-response

loops driving behavioral chaining might not be specific to prey

capture, but provide a more general mechanism underlying

goal-directed behavior in zebrafish.

It has been proposed that a specializedUV-sensitive zone in the

ventral retinacould facilitate targetingprey frombelow [53–55].We

demonstrate that larvae do indeed orient themselves beneath the

prey over the course of a hunting sequence (Figures 6I and 6J).

Dedicated neural circuits in the retina and pretectum could

mediate the initial formation of the stimulus-response loop [28,

55–58], subsequently maintained by the optic tectum [32, 59, 60]

and the nucleus isthmi [61]. Future work may seek to identify and

characterize the neural circuitry underlying prey capture strikes

(Figure 5). When the eyes are converged, prey in the temporal-

ventral retina is represented symmetrically in the anterior regions

ofboth tecta.Weposit theanterior tectumcontainsspecializedcir-

cuitry for implementing the appropriate capture maneuver. The

S-strike and attack swim may be driven by separate command-

like neuronal populations [59], or alternatively by different activity

patternswithina commonpopulation. These swimsareperformed

in conjunction with a stereotyped jaw movement to capture prey

(Figures 6F–6H; Videos S6 and S7). Producing invariant actions

in response to stereotyped ‘‘releasing’’ stimuli has long been

considered an efficient way to ensure reproducible outcomes in

innate behaviors [8]. We speculate that by linking different

releasing stimuli to stereotyped swims sharing a common jaw
kes clustered into two types using K-means clustering. Attack swims (blue).

s S-strike) and treatment group (sham versus unilateral).

ly delensed (right) animals. Cross indicates eyewith lens removed (right animals

azimuthal angles (bottom) in the visual field for sham and unilaterally delensed

g on the strike zone triggers an attack swim. Center left: a paramecium falling

d in the visual field but outside the strike zone triggers an S-strike. Far right: a

(gray dotted outline) triggers an inappropriate attack swim. D signifies offset

nd (K): ***p < 0.001; n.s., not significant (p = 0.15), permutation test on energy



movement, the nervous system of the zebrafish larva has evolved

an efficient means to produce reliable, yet flexible, behavior.

Since eye convergence was first identified as a hallmark of prey

capture in zebrafish larvae, therehasbeenspeculationabout apo-

tential role of binocular vision in this behavior [16, 26]. We demon-

strate that, in addition to reducing the rateofpreydetection, lossof

binocular vision reduces the probability to strike once a prey cap-

ture sequence has begun (Figures 7A–7G). One possible explana-

tion is that the stimulus-response loop that bringsprey to the near-

anterior visual field is monocularly driven, with visual cues from

each eye independently and stochastically releasing the next

bout in the sequence. In this case, loss of vision in one eye would

reduce the probability of a bout being generated, giving prey time

to move out of the field of view of the intact eye. Alternatively, an-

imalsmay integratecues frombotheyes tobring thepreyoptimally

into the strike zone of both retinas. While we show that binocular

cues are not required to release the capture strike behavior (Fig-

ures 7G–7I), they do appear to serve a role in the appropriate posi-

tioningofprey in thestrikezone (Figures7J–7L). These results sug-

gest that binocular vision could be used as a mechanism to

determine distance to prey in zebrafish larvae.
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Further information and requests for reagents should be directed to and will be fulfilled by the Lead Contact, Herwig Baier (hbaier@

neuro.mpg.de). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal procedures conformed to the institutional guidelines set by theMax Planck Society andwere approved under licenses from

the regional government of Upper Bavaria (Regierung von Oberbayern).

Wild-type zebrafish larvae
For all experiments, unless noted otherwise, we obtained TLN (nacre) embryos from an outcross of TLN homozygous to TL/TLN het-

erozygous adults. Until 3 days post fertilization (dpf) embryos were raised in Danieau’s solution (17 mM NaCl, 2 mM KCl, 0.12 mM

MgSO2, 1.8mMCa(NO3)2, 1.5 mMHEPES) at a density of 60 embryos per 50mL at 28�Cwith a 14 h-10 h light-dark cycle. Thereafter,

embryos were transferred to new dishes containing fish system water and raised at a density of 30 larvae per 50 mL until behavioral

testing at 7 dpf or 8 dpf. At 5 dpf and 6 dpf, a few drops of dense paramecia culture (Paramecium multimicronucleatum, Carolina

Biological Supply Company, Burlington, NC) were added to each dish and larvae were allowed to feed ad libitum.

Mutant zebrafish larvae
For experimentswithmutants, we used lakritz (lakth241) andblumenkohl (blutz257) mutants [46] in a TLbackground. Lakmutantswere ob-

tained from a heterozygous in-cross. Homozygous mutants could be clearly identified by their dark color compared to sibling controls

(mixture of heterozygotes andwild types) in a visual backgroundadaptation (VBA) assay.Blumutantswere obtainedbyoutcrossing het-

erozygous females to homozygous males. Similar to lak, mutants could be identified unambiguously with a VBA assay. Larvae were

raised as described above, except they were not fed at 5 and 6 dpf, and thus their naive prey capture ability was assayed at 7 dpf.

This was to minimize potential confounding effects of experience-dependent improvement in prey capture efficacy between groups.

Genetic ablation of retinal ganglion cells (RGCs)
Chemogenetic ablation of RGCs was performed using the Q-system driving the expression of an enhanced version of nitroreductase

(epNTR). Double transgenic larvae (Tg(ath5:QF2)mpn405; Tg(QUAS:epNTR-tagRFP)mpn165) [47] were fed at 5dpf and 6dpf with
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paramecia and then incubated with 5mMmetronidazole (MTZ, Sigma Aldrich) in fishwater containing 0.2%DMSO, for 24 h. TheMTZ

solution was washed out and larvae were allowed to recover overnight before behavioral experiments were performed at 8dpf. Con-

trols were siblings only expressing QUAS:epNTR-tagRFP and treated similarly with MTZ.

METHOD DETAILS

Free-swimming behavioral assay with real prey
Experiments with real prey were conducted using a custom-built behavioral setup. Behavior arenas were produced by flooding a

35 mm Petri dish with 2% agarose (Biozym, Germany), with an acrylic square (15 3 15 mm, 5 mm deep) placed in the center.

Once the agarose had set, the acrylic square was removed producing a hollow chamber with transparent walls. Single larvae

were introduced to the chamber along with a drop of culture containing approximately 50-100 paramecia. The chamber was filled

to the top with fish system water and a glass coverslip was placed over the chamber to flatten the meniscus. This provided a clean,

transparent chamber where behavior could be observed and tracked.

Behavior experiments were performed in a climate-controlled box kept at 28 ± 1�C between 3 and 12 h after lights on. Each larva

was recorded for 20min using a high speed camera (PhotonFocus, MV1-D1312-160-CL, Switzerland), fitted with an objective (Sigma

50 mm f/2.8 ex DGMacro, Japan), connected to a frame grabber (Teledyne DALSA X64-CL Express, Ontario, Canada). The camera

was positioned over the behavior arena, which was lit from below with a custom-built near infrared LED array (LEDs from OSRAM

Licht AG). Behavior was filmed at 500 frames per second (fps) with a frame size of 500 3 500 pixels covering an area slightly larger

than the arena (Figure 1B), providing a final resolution of approximately 0.03 mm/pixel. The aperture of the camera objective was

adjusted such that the fish was in focus throughout the entire depth of the arena. Recording was performed using StreamPix 5 soft-

ware (NorPix, Quebec, Canada) and individual trials were initiated through a custom written Python script. Each 20 min session was

split into 20x 1 min recording trials, with < 1 s between the end of one trial and the beginning of the next, to keep video files to a

manageable size. If frames were dropped during a trial, the recording was stopped to prevent problems in subsequent analyses.

Videos were compressed offline in VirtualDub with Xvid compression before tracking was performed.

Tail and eye tracking
Tracking was performed using custom-written Python scripts. Each frame was tracked independently. Each frame was divided by a

background image, calculated as the median of every 100th frame over all trials from a given animal. The frames were then thresh-

olded and contours extracted using OpenCV. The largest contour in the image was taken as the outline of the fish and all other pixels

were discarded. Then, the histogram of pixel values of the fish was normalized and a second threshold was applied to find the three

largest contours within the fish, corresponding to the two eyes and swim bladder. The eyes were identified automatically as the two

contours with the nearest centroids and left and right identities were assigned using the sign of the vector product between lines

connecting the swim bladder to these two points. The heading of the fish was defined by a vector starting in the center of the

swim bladder and passing through the midpoint between the eye centroids. The angle of each eye was calculated from the image

moments of their contours and was defined as:

1

2
� arctan

�
2 � u11

u20 � u02

�
;

where uij is the corresponding central moment. The eye angles in an egocentric reference were calculated as the difference between

the heading angle and absolute orientation of the eyes, and eye convergence defined as the difference between the eye angles. A

100 ms median filter was applied to smooth the traces obtained from each eye while preserving edges. The two thresholds used for

tracking were set manually for each fish. In frames where the eye contours could not be detected through thresholding, we instead

applied a watershed algorithm to obtain contours and then proceeded as above.

Due to the dark pigmentation of lak and blumutants, there was insufficient contrast to segment the eyes from the surrounding skin

using either thresholding or watershed analysis. For this reason, eye tracking could not be performed in these animals. To calculate

the heading in this case, we used the second threshold to segment the head and body of the fish from the tail, for which we identified

the minimum enclosing triangle using OpenCV. The heading was then defined as a vector passing through the apex and centroid of

this triangle, and the position of the swim bladder was estimated as lying midway between these two points.

To track the tail of the fish, we skeletonized the contour obtained after applying the first threshold described above. We started the

tracking from the point on this skeleton nearest to the swim bladder. We used a custom-written algorithm to identify the longest path

through the skeletonized image that started at this point, ended at the tip of a branch, and began in the opposite direction of the head-

ing vector. We then linearly interpolated 51 equally spaced points along this path to obtain the final tail points.

The tail tip angle was defined as the angle between themidline of the fish (provided by the heading vector) and a vector between the

center of the swim bladder and the last point of the tail. This angle is used to help visualize the sinusoidal oscillation of the tail, but was

not used as the basis of any analysis in the paper.

We vectorized the tracked tail points for kinematic analysis in a similar manner to what has been previously described [34, 35].

Briefly, we calculated the angle between the midline (defined by the heading vector) and a vector drawn between each adjacent

pair of tail points, providing a 50 dimensional representation of the tail in each frame. A three frame median filter was applied to

the heading angle and tail kinematics to remove single frame noise.
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The mean tail tip curvature was computed as the mean of the last ten points of the tail angle vector, and was used for bout seg-

mentation. Bouts were detected by applying a threshold to the smoothed absolute value of the first derivative of this mean tail tip

curvature. Uncharacteristically long bouts detected with this method were further split by finding inflection points in the smoothed

absolute value of the mean tail tip curvature convolved with a cosine kernel.

Generating a behavioral space
To generate our behavioral space, we excluded any bouts during which the tail of the fish hit the wall of the behavior chamber. This

was to ensure that only the fish’s self-generated motion – and not motion artifacts introduced from distortion of the tail by the wall –

was considered when mapping the behavioral space. Consequently, not all the bouts we observed could be mapped into the space.

To describe bouts in terms of their postural dynamics, we performed principal component analysis (PCA) on the tail kinematics

across all bout frames. Data were normalized before applying PCA by subtracting the mean tail shape and dividing by the standard

deviation.

The next step in generating the behavioral space involved computing the distance between every pair of bouts with dynamic time

warping (DTW) [37]. DTWfinds an alignment between two time series thatminimizes a cost function, which is the sumof the Euclidean

distances between each pair of aligned points. In our analysis, we only allowed trajectories to be warped within a 10ms time window.

For bouts of different lengths, we padded the end of the shorter bout with zeros until it was the same length as the longer bout. We

performed each alignment twice, reversing the sign of all the values for one of the trajectories the second time, and considered the

distance between two bouts to be: minðDTWðt1; t2Þ;DTWðt1; �t2ÞÞ, thus effectively ignoring the left/right polarity of the bouts.

To generate the behavioral space, we performed a round of affinity propagation [38] prior to embedding, using the negative DTW

distance between a given pair of bouts as a measure of their similarity. We varied the affinity parameter in this step, testing values

ranging from 400 to 4000 (number of clusters ranging from 1634 to 179), and found it did not have a strong impact on the structure

of the final behavioral space (Figure S1B). Therefore, we used themedian similarity between bouts as the preference for the clustering

(~400). Doing so provided 2,802 clusters, of which we excluded any clusters containing fewer than three bouts, thus ensuring that

only repeatedly observable motor patterns were used for generating the behavioral space. As a final quality check, we manually in-

spected every cluster exemplar and removed incorrectly identified bouts, which usually was the result of tracking artifacts from a

paramecium crossing the tail of the fish. The final number of clusters that we kept for embedded was 1,744.

Since affinity propagation identifies an exemplar to represent each cluster, we produced our final behavioral space by performing

isomap embedding [39] of these exemplars. For the isomap embedding, we constructed a nearest-neighbors graph of the exemplars

using their DTW distances, and calculated the minimum distance between each pair of points in this graph. The isomap components

correspond to the eigenvectors of this graph distance matrix.

In addition to isomap, we also performed t-SNE [63] and UMAP [64] of the data. As with isomap, we performed the embedding using

the precomputed DTW distances between the 1,744 exemplars. For t-SNE, we systematically varied the perplexity (10, 20, 50) and

learning rate (10, 100, 1000) of the embedding to see whether this significantly changed the visualization of the behavioral space (Fig-

ure S1C). Similarly with UMAP, we systematically varied the nearest neighbors parameter trying values between 5 and 50 (Figure S1D).

Isomap, t-SNE and UMAP embeddings in Figure S1E were obtained using the precomputed DTW distances between all bouts in

the dataset. We used 20 nearest neighbors (or 20 perplexity, in the case of t-SNE) to generate these spaces.

Mapping kinematic features and eye convergence into the behavioral space
With our PCA-DTW-isomap approach, each point in the behavioral space represents a small cluster of bouts. For each bout, we

calculated the mean speed, angle through which the fish turned, maximum angular velocity of the fish, and the time at which the

maximum angular velocity occurred (turn onset). In Figure S1F, we show themedian of each of these features over a cluster. Similarly,

we could calculate the proportion of bouts in each cluster that occurred during spontaneous, early, mid, or late prey capture as

defined below (see Eye convergence analysis). The prey capture index was defined as:

#prey capture bouts in cluster�#spontaneous bouts in cluster

#bouts in cluster
Mapping bouts from other experiments into the behavioral space
Tomap bouts from new experiments into the behavioral space, we extracted tail kinematics and identified bouts as described above

(see Tail and eye tracking). The postural dynamics of each new bout was projected onto the first three principal components obtained

from the main dataset to bring it into the same space as bouts from that dataset. Then, each bout was mapped to one of the 1,744

exemplars identified in ‘‘Generating a behavioral space’’ using dynamic time warping (DTW), with the nearest exemplar having the

smallest DTW distance to the bout. In this way, each new bout could be projected into the three dimensional behavioral space

defined by the 1,744 exemplars.

Singular-value decomposition of behavioral transitions
To identify transition modes, we generated a transition frequencymatrix,M, whereMij contains the number of transitions frommicro-

cluster j to micro-cluster i, where each micro-cluster is a small cluster of bouts in the behavioral space identified with affinity prop-

agation (see Generating a behavioral space). This matrix included all the transitions from all animals for a given experiment.
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Since there are more than 3 million (1,7442) possible transitions between motifs, and only 44,154 transitions in our largest dataset,

thematrixM is necessarily sparse. This would hinder the identification of common dynamical motifs, and sowe performed smoothing

on matrix M by blurring similar transitions into each other. To achieve this, we took advantage of the fact that nearby points in our

behavioral space encode bouts with similar postural dynamics. We computed a weighting matrix, W, where Wijhe�a�dðpi ; pjÞ.
dðpi; pjÞ is the Euclidean distance between a pair of points in the three-dimensional behavioral space, and a is a smoothing factor

(see Figure S2A).

We normalized matrixW so that the columns summed to one and then smoothed the transitions in matrix M with the transforma-

tion: Msmooth =WMWT .

To distinguish between symmetric transitions (i.e., those that occur in both direction), and antisymmetric transitions (i.e., those in

which transitions in one direction outweigh those in the other), we decomposed the smoothedmatrix,Msmooth, into its symmetric and

antisymmetric parts, where:

Msmooth = Msymmetric +Mantisymmetric
Msymmetric = 1 =

2
�
Msmooth + MT

smooth

�

Mantisymmetric = 1 =

2
�
Msmooth �MT

smooth

�
The symmetric and antisymmetric transition modes were found by taking the SVD of these two matrices respectively.

Every real or complex matrix, A, can be factorized using the singular-value decomposition (SVD) into three matrices such that:

A = USVT

The columns of U and rows of VT define two sets of orthonormal basis vectors and S is a diagonal matrix containing the singular

values, ordered from largest to smallest. The SVD describes the transformation performed by matrix, A. Under this transformation,

each row of the matrix, VT , is mapped to the corresponding column of U and scaled by the associated singular value. Therefore, this

decomposition provides an unbiased description of the most common transitions between micro-clusters.

A symmetric matrix, such as Msymmetric, geometrically defines a scaling transformation. Consequently, its singular-value decom-

position is the same as its eigendecomposition: spaces U and V are the same and S contains the eigenvalues. As such, the nth tran-

sition mode of Msymmetric can be written:

v
.

n:sn:v
.T

n

where v
.

n is the singular vector with corresponding singular value, sn. To visualize symmetric transition modes (S-modes), we found

the contribution of each micro-cluster to the singular vector defining that transition mode and show this in the behavioral space.

An antisymmetric matrix, such as Mantisymmetric, describes a set of orthogonal rotations. As such, spaces U and V are related by a

90� rotation and each transition mode can be written:

�
v
.

1 v
.

2
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0 �sn
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where v
.

1 and v
.

2 are orthonormal, and sn is the corresponding singular value. Positive values in v
.
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2,
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.
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.
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.

1 map to negative values in v
.
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.
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.
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These are the transitions we represent with arrows in figures displaying A-modes.

Investigating transition modes with toy data
To generate a toy behavioral space, we generated nine clusters with a 2D Gaussian distribution of points (SD = 0.06) and

cluster centers drawn randomly from a 2D uniform distribution between 0 and 1. Each cluster contained a random number of points

(drawn from a normal distribution; mean = 50, SD = 5). We selected a random seed that produced significant overlap between clus-

ters in the 2D hypothetical behavioral space. Each point in this space was considered analogous to a micro-cluster in our isomap

space.

Wemanually distributed the nine clusters between three hypothetical ‘‘states.’’ For ‘‘separated behavioral states,’’ each state con-

sisted of three clusters and each of the nine clusters belonged to only a single state. For ‘‘overlapping behavioral states,’’ each state

consisted of four clusters and three of the clusters were shared between two states.
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To generate symmetric transition structure between the three states, we used a left stochastic matrix, PS, with values:

PS =

0
@ 0:7 0:2 0:1

0:2 0:7 0:1
0:1 0:1 0:8

1
A

To generate antisymmetric transition structure between the three states, we used a left stochastic matrix, PA, with values:

PA =

0
@ 0:3 0:1 0:7

0:5 0:1 0:1
0:2 0:8 0:2

1
A

To generate transition frequency matrices, we performed Monte Carlo simulation with 2000 transitions (separated behavioral

states) or 10,000 transitions (overlapping states) using one of the stochastic matrices above. For each transition, we randomly

selected a ‘‘micro-cluster’’ from the next state in the sequence. After the simulation was complete, we added random transitions

to the matrix for a final total of 2500 transition (separated states) or 12,500 transition (overlapping states).

We then proceeded to perform smoothing of the transition matrices obtained in our simulations, split matrices into symmetric

and antisymmetric components, performed SVD on each of these matrices, and performed hierarchical clustering in the space

defined by transition modes (first two S-modes for symmetric, first A-mode for antisymmetric). For separated behavioral states

we generated three clusters and for overlapping behavioral states we generated six clusters (three regions of the behavioral

space that contribute to a single state, three regions of the behavioral space that contribute to multiple states). We then

computed a confusion matrix, C, where Cij is the number of points assigned cluster label i by our hierarchical clustering and

whose ground-truth label is j.

Eye convergence analysis
To identify periods of eye convergence, we calculated a kernel density estimation (Gaussian kernel, bandwidth = 2.0) of the eye

convergence angles across all frames for a given fish. This distribution was bimodal (eyes converged or unconverged) and therefore

we defined the eye convergence threshold as the antimode (least frequent value between the two modes). To identify spontaneous,

early, mid, and late prey capture bouts, we calculated the mean eye convergence angle over the first and last 20 ms of a bout, and

concluded the eyes were converged if this number was above the threshold. Bouts were classified as spontaneous if the eyes were

unconverged at the beginning and end of a bout; early prey capture if the eyes were unconverged at the beginning and converged at

the end of the bout; mid prey capture if the eyeswere converged at the beginning and end of the bout; and late prey capture if the eyes

were converged at the beginning and unconverged at the end of the bout.

Clustering in a combined kinematic-transition space
To define behavioral clusters, we combined information about bouts’ kinematics and transitions to generate a new combined kine-

matic-transition space. Kinematic similarity between exemplars was computed from DTW distances as described above. We con-

structed a transition space by combining the first two non-common symmetric transition modes, S1, and S2, and the pair of vectors

defining the first antisymmetric transition mode, A1, and then calculating an orthogonal basis (using the Gram-Schmidt process).

Wemultiplied the kinematic DTWdistances between exemplars by the distance between exemplars in transition space (generated

by combining singular vectors as described above). Each exemplar was then represented by a feature vector, with each feature being

the similarity to every other exemplar. We performed dimensionality reduction on this new feature space (using isomap), retaining 20

components. We then performed ward hierarchical clustering in this reduced space. We calculated the silhouette score associated

with different thresholds for defining cluster boundaries, and identified a local maximum at seven. The bouts belonging to each clus-

ter were inspected and confirmed to align well with previous annotations of zebrafish behavior.

In Figure 3C,we colored points in the original behavioral space based on the cluster theywere assigned in the combined kinematic-

transition space. The transparency value in that graph was determined by the number of nearest neighbors that were assigned the

same cluster label.

To produce average traces for the tail tip angle in Figure 3B, we aligned all exemplars belonging to a given cluster using dynamic

time warping and took the average of the aligned traces. The representative examples we show are real bouts with a similar tail angle

trace to the average.

Modeling transitions between clusters
For this analysis, we first identified every uninterrupted chain containing at least two bouts in our data which could be assigned a

behavioral cluster, i.e., only chains of bouts from within a single recording trial (see Free-swimming behavioral assay with real

prey) and that could be embedded in the behavioral space (see Generating a behavioral space). We then tested the ability of a series

of Markov models – ranging from zeroth to fifth order – to predict each subsequent bout. For this purpose, we modeled each cluster

as a state in a Markov process (allowing transitions to the same state, since fish can perform the same type of bout twice in a row).

Each of our models contained seven states (from our behavioral clusters), s1;s2;.;s7, and we denote the current state, t0, the next

state t+ 1, the previous state t�1, etc.
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A zeroth orderMarkovmodel does not know the current state and therefore guesses the next state based simply on the distribution

of bouts across all states:

Pðt+ 1 = sijt0 = sjÞ = PðsiÞ
In a first order Markov model, the current state is known. To predict the next state, we considered all other times the current state

was visited ðtnÞ and observed which bout occurred next in the sequence:

Pðt+1 = sijt0 = sjÞ = Pðtn+ 1 = sijtn = sjÞ
For the second-order Markov model, we took into account the last two states in a chain when predicting the next state:

Pðt+ 1 = sijt0 = sj; t�1 = skÞ = Pðtn+ 1 = sijtn = sj; tn�1 = skÞ
Similarly, for Markov models up to order, m, we predicted the next state:

Pðt+1 = sijt0 = sj; t�1 = sk ;.; t1�m = snÞ = Pðtn+ 1 = sijtn = sj; tn�1 = sk ;.; tn+ 1�m = snÞ
Paramecium tracking
To track paramecia within frames, we performed background division (see Tail and eye tracking) followed by Gaussian blurring (using

a 3 3 3 pixel kernel) over the image. Next, we applied an adaptive threshold to the image and rotated and centered the fish in the

frame using themidpoint between the eyes and the heading obtained from tracking. To identify paramecia, we applied amedian filter

over the image (53 5 pixels), then performed gray erosion (33 3 flat structuring element) and thresholding.We counted contourswith

an area > 3 pixels as paramecia, and used the centroids of these contours to determine prey position in the visual field.

Generating stimulus maps
To obtain maps of prey probability density, we performed paramecium tracking as described above for all bouts belonging to a given

behavioral cluster (depending on the figure, using either the first and last frame as defined by bout segmentation, or defined time

points). Normalized histograms of prey density were obtained after overlaying paramecium positions in all images and masking

out the area of the image containing the fish (identified through thresholding of an average image). These histograms were then

smoothed with a Gaussian kernel. To identify regions of the visual field with a higher paramecium density, we applied the same pro-

cess to ~90,000 randomly chosen frames from all videos and subtracted this baseline density from the image. We then threshold the

resulting density plot using the 85th percentile, setting all pixels below this value to zero, and overlaid the average image of the fish.

We obtained time series of paramecium density by aligning video sequences to the onset of the capture strike and proceeded to

analyze frames as described above.

Free-swimming virtual prey capture assay
We designed a setup to present virtual prey stimuli to individual zebrafish larvae via a screen on the surface of the water. We adapted

a previously described virtual reality setup (Stytra) which allows real-time tracking and presentation of visual stimuli [62]. Behavior

arenas were produced by flooding a 55 mm Petri dish with 2% agarose (Biozym, Germany), with a circle mold (18 3 18 mm,

5 mm deep) placed in the center. Once the agarose had set, the mold was removed producing a hollow chamber with transparent

walls. Individual animals are placed in the arena with fish water and a projection filter (3008 - Tough Frost, Rosco) was placed on top.

Visual prey-like stimuli were projected onto this filter via a cold mirror (45� AOI, 101 3 127mm, Edmund optics).

Animals were recorded at 300 fps with a Ximea MQ013MG-ON camera placed below the arena using a 25 mm lens (Edmund Op-

tics Nr. 59-872). Diffuse infrared illumination for imaging was provided from the top using an IR LED array (RAYMAX 25, 120�). A white

light source was also provided from the top. Stimuli were presented to the fish via the projector (DLP LightCrafter 4500, 9123 1140

pixels) but blocked before the camera by an IR band-pass filter. Three lenses were combined together to reduce the size of the pro-

jected stimuli on the screen (one 150mm lens, AC508-150-A and two 75mm lenses, AC508-075-A-ML). Image acquisition, real-time

processing and stimulus generation were performed on aDesktop PC running Stytra [62]. Briefly, the backgroundwasmodeled using

a mean image from several previous frames. The difference between the current frame and the thresholded background was

computed. The eyes and swim bladder were identified as the largest contours in the thresholded image. The heading of the fish

and the angle of each eye were computed using the vector starting in the center of the swim bladder and passing through the

midpoint between the eye centroids (see Tail and eye tracking). Each experiment started with a two minute pre-trial period (no stim-

ulus) in order for the fish adapt to the arena. This period was used to compute a distribution of spontaneous eye convergence angles.

The 98th percentile of the data was computed from this distribution and subsequently used during virtual prey presentation as a

threshold to detect eye convergence (prey capture). Virtual prey stimuli consisted of gray dots of a single pixel moving linearly

with a speed matching real paramecia. For each experiment, 50 virtual prey items were presented on each trial. We presented an-

imals with six trials, lasting 40 s each. In three of the trials virtual prey disappeared for 2 s each time eye convergence was detected

online (‘‘vanishing’’ trials). In the other three trials, prey remained visible thewhole time (‘‘persisting’’ trials). The order of persisting and

vanishing trials was randomized for each fish. Five periods of no stimulus presentation lasting 24 s eachwere interspersed in between

each trial. Analysis was performed with custom-written Python scripts.
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Capture strike analysis
We defined capture strikes as bouts that belonged to a micro-cluster containing > 50% late prey capture bouts. To determine the

moment of capture in Figure 5A, we selected 100 random capture strikes and manually annotated the frames where the jaw was

maximally extended.

For subsequent analysis, we only considered the 50 ms time window shown in Figure 5A (24-74 ms after the bout onset as deter-

mined by our bout segmentation algorithm) and proceeded with our general DTW-isomap embedding algorithm as described above

(see Generating a behavioral space). To generate the capture strike subspace, we computed the DTW distance between each pair of

strikes, only allowingwarpingwithin a 6ms (3 frames) timewindow.We used the resulting pairwise distancematrix directly for isomap

embedding, keeping the first two dimensions. Note we did not need to perform an intermediate affinity propagation micro-clustering

step, due to the small size of this dataset. We then performed k-means clustering (k = 2) to classify strikes.

Free-swimming behavioral assay in three dimensions
To record behavior simultaneously from above and from the side, we designed a new chamber. A 3mL transparent, unfrosted plastic

cuvette was with flooded with 2% agarose. An acrylic rod (203 5 x 5 mm) was inserted into the liquid agarose, which was allowed to

set, after which the rodwas removed leaving behind a hollow chamber. As before, individual larvae were introduced into the chamber

with a drop of paramecia culture topped up with fish system water. The opening was plugged with a small piece of acrylic cut to

match the cross section of the chamber (53 5 mm). The cuvette was placed on its side on top of a glass coverslip suspended above

a mirror angled at 45�. The high speed camera was positioned above this setup in such a way as to allow the fish in the chamber as

seen from above as well as the reflected side view from the mirror to be visible within the field of view of the camera. The IR LED array

was rotated by 90�, allowing the chamber to be illuminated from the side and from below (via the mirror) with a single light source. We

reduced the aperture of the camera objective so that the entire arena was in focus in both views and offset the decrease in luminance

by increasing the exposure time of each frame. Consequently, for this experiment we achieved a frame rate of 400 fps. As described

above, data from each fish was split into 20x 1 min recording trials.

To record jaw movements during prey capture with higher spatial resolution in Video S6, we used two cameras (PhotonFocus,

MV1-D1312-160-CL, Switzerland) and two light sources and filmed a number of fish swimming in a custom-built transparent cham-

ber. We waited for one of the fish to start hunting a paramecium in the field of view of both cameras and manually triggered the

recording. Frame acquisition was synchronized using StreamPix 5 and a dual camera frame grabber.

Jaw tracking
As for the single view setup, each frame was tracked independently offline using custom-written Python scripts. Each frame was

divided by a background image, calculated as the median of every 100th frame over a recording trial. The upper and lower halves

of the frame were tracked separately. The lower half of the frame, containing the image of the fish as seen from above, was tracked

as described above. Fish were only tracked from the side when their heading was within ± 45� of the imaging plane to minimize ar-

tifacts arising as a result of foreshortening. Frames were thresholded and contours extracted using OpenCV. The largest contour in

the image was taken as the outline of the fish and all other pixels were discarded. Then, the histogram of pixel values of the fish was

normalized and a second threshold was applied to find a contour enclosing the head and body of the fish. The pitch and angle of the

cranium were calculated using image moments of these two contours respectively, with cranial elevation defined as the difference

between them.

To find the point of the base of the jaw, we first identified the centroid of the head-body contour and the vector defined by the cra-

nium angle (i.e., orientation of this contour in the frame). We extended this vector from the centroid until it intersected the fish contour.

Next, we found themidpoint between the centroid and this intersection point. From thismidpoint, we extended a vector orthogonal to

cranium angle vector until it intersected the fish contour at the base of the jaw. Jaw depression was defined as the Euclidean distance

between the midpoint and this intersection point.

The cranial elevation angle and jaw depression were smoothed with an edge-preserving five-frame median filter. Then, we applied

a high-pass filter by subtracting the baseline of these two kinematic features over a recording. To compute this baseline, we first

calculated a 250 ms rolling minimum, and then computed the one-second rolling mean of this rolling minimum. This provided a rela-

tively stable baseline for identifying jaw movements, despite changes in pitch and azimuth of the fish over a recording. To segment

jaw movements, we identified periods when the baseline-adjusted jaw depression, smoothed with a 50 ms rolling average, was

above a predetermined threshold and defined movement onset and offset as inflection points in this smoothed trace.

Generating a behavioral space of jaw movements
To generate the jaw movement behavioral space in Figure 6F, we performed PCA on the jaw depression and cranial elevation traces

across movement frames (see Jaw tracking). We calculated the DTW distance (warping bandwidth = 10 ms) between each pair of

movements projected onto the first principal component (Figure 6E), and performed isomap embedding using the resulting distance

matrix. To identify clusters, we used Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) (hdbscan

library, Python).
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Paramecium tracking from the side
We tracked paramecium and generated stimulus maps from the side in a similar manner as described above (see Paramecium

tracking and Generating stimulus maps). To generate stimulus maps, we aligned frames using the centroid of the contour outlining

the head and the pitch of the fish in the water. Baseline paramecium density was calculated from ~18,000 randomly selected frames.

Lensectomy
For lensectomy experiments, larvae were allowed to feed on paramecia ad libitum between 5 and 6 dpf. At 7 dpf, larvae were anaes-

thetized in 0.02% tricaine (MS-222, Sigma-Aldrich) and then embedded in 2% low melting point agarose (Invitrogen). Larvae were

kept anaesthetized for the entire surgery. Some of the agarosewas removed from around the eyes using a scalpel to facilitate access.

Animals undergoing sham, unilateral, or bilateral lensectomy were all treated in the same way up to this point andmounted alongside

each other to ensure as similar treatment conditions as possible. Lensectomies were performed with borosilicate glass needles

pulled to a sharp point. A single horizontal incision was made in the transparent cuticle of the eye and the lens was removed, taking

care not to damage other parts of the eye such as the retinal pigment epithelium. This was performed on either one or both eyes.

Unilateral lensectomies included animals that had either the left or right lens removed. Animals were freed from the agarose and al-

lowed to recover overnight in fish system water. Immediately prior to behavioral testing at 8 dpf, animals were inspected for swelling

or other aberrations to the eye, and excluded from the experiment if this was seen. Animals were tested in the 2D prey capture assay

as described above. After behavioral testing, each larva was re-embedded in agarose and a snapshot of its head obtained with a

camera mounted to a stereomicroscope to confirm that the lens had not regenerated.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were performed using the SciPy library in Python, or, if appropriate tests were not available in this library, we wrote

new code to perform statistical tests. For plots, the type of error bar and p values are indicated in the figure legends.

Identification of significant transition modes
Significant transition modes in Figure 2D were identified by permutation testing and cross validation. Animals were split into training

and test groups (50% animals in each group). Transition matrices were constructed for these two groups and SVD was used to iden-

tify transition modes of the training group. For each mode we constructed a transition model by adding the common transition mode

to it. We compared these training models with the test group’s transition matrix by computing the sum of squares error between

them. This was repeated across 10,000 splits into training and test datasets. We tested the significance of each mode with a

one-sided t test on the distribution of sum-of-square errors across all partitions of the data (significance level = 0.01), for modes

that provided a better prediction than the common-mode model alone.

Comparison of transition modes across experimental datasets
To compare transition modes across datasets and treatment groups, we calculated the absolute value of the cosine similarity be-

tween the first four symmetric modes (S-modes) or first four antisymmetricmode pairs (A-modes). To test significance, we performed

a permutation test. We permuted the labels between the two groups 1000 times (or if an exact test required less than 1000 compar-

isons, used that) and calculated the pairwise similarity of equivalent modes. This generated a null distribution of similarities against

which we could calculate a p value for the observed similarity between unshuffled groups. For calculating the similarity between anti-

symmetric modes, we compared both left and right singular vectors to account for rotations and took the maximum. In the Results

section, we report the similarity between like transition modes (i.e., always comparing S1 to S1 and A1 to A1 etc.). In Figures S3C,

S5D, and S6C we show pairwise similarities between different transition modes.

Simplex projection to test higher order behavioral dynamics
To test whether higher-order behavioral dynamics were present in behavioral data (Figure 3E), we took each focal bout and inspected

the preceding bouts in the chain. We identified all other occasions that this sequence of states occurred in the rest of the data and

calculated which state was most likely to occur next. We calculated the probability of predicting the next bout correctly across all

instances of a given behavioral cluster to obtain a distribution. We compared the probability distributions obtained by considering

the past n-1 bouts in a chain with those obtained comparing the past n bouts in the chain using a one-tailed Student’s t test and

corrected for multiple comparisons with a Bonferroni correction (significance level = 0.01).

Identification of significant transitions in an ethogram
To identify which first-order transitions between behavioral clusters were significant (Figure 3F), we used a permutation test.We shuf-

fled the order of boutswithin each fish 1000 times and recomputed the first-orderMarkovian transition probability matrices. This gave

a reference distribution of transition probabilities between each pair of modules from which we could calculate one-tailed p values.

We considered significant transitions as those that had a p value < 0.05 after applying a Holm-Bonferroni correction (72 = 49

comparisons).
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Statistical analysis of virtual prey experiments
We compared the cumulative distributions of bout duration and number of prey capture bouts per sequence across all trials with a

Kolmogrov-Smirnov test. To compare averages for these two metrics, we calculated the mean per fish and then compared control

and test trials with a Wilcoxon signed rank test.

Quantification of prey distance during capture strikes
We tracked paramecia in the front central visual field of the larvae and calculated the probability density as described above. We

compared groups with a permutation test on energy distances. We shuffled labels between groups (attack swim versus S-strike

or unilateral versus sham) 1,000,000 times to calculate a null distribution of energy distances. We calculated the one-tailed p value

by comparing the observed energy distance to this null distribution. We calculated the energy statistic in two dimensions to compare

2D stimulus maps, or one dimension to compare distances and angles.

Quantification of lensectomy experiments
In Figure 7, we tested time spent in prey capture (prey capture score), hunt initiation rate, strike probability, and number of capture

strikes of each type between sham and unilateral, or unilateral and bilateral conditions with a Mann-Whitney U-test.

DATA AND CODE AVAILABILITY

The code generated during this study and sample data are available on Bitbucket (https://bitbucket.org/mpinbaierlab/

mearns_et_al_2019). Processed data generated during this study are available at Mendeley data (https://doi.org/10.17632/

mw2mmpdz3g.1). The full dataset generated during this study has not been deposited in a public repository due to its large size

but is available from the corresponding author on request.
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